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Abstract

A new concept of a two-phase fluid driving system using cavitating flow of a magnetic fluid is proposed, and the driving and accel-
eration performance of the system is numerically predicted. A typical computational model for cavitating flow of a magnetic fluid is pro-
posed and several flow characteristics, taking into account the strong nonuniform magnetic field, are numerically investigated to realize
the further development and high performance of the proposed new type of two-phase fluid driving system using magnetic fluids. Based
on numerical results, the two-dimensional structure of the cavitating flow as well as the cloud cavity formation of the magnetic fluid
through a vertical converging–diverging channel are shown in detail. The numerical results demonstrate that an effective two-phase mag-
netic driving force and fluid acceleration can be obtained by the practical use of magnetization of the working fluid. Also clarified is the
cavitation number in the case of a strong magnetic field with a larger value than that in the case of a nonmagnetic field. Magnetic control
for suppression of cavitation bubbles is remarkably enhanced in the condition of high Reynolds number. Further clarified is the precise
control of the cavitating flow of magnetic fluid that is possible by effective use of the magnetic body force that acts on cavitation bubbles.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Magnetic fluids are a colloidal suspension of many fine
particles of a solid magnetic material (mean diameter
�10 nm, number density �1023/m3) in a carrier liquid such
as water, hydrocarbon, ester and fluorocarbon. The parti-
cles are usually stabilized to overcome magnetic and van
der Waals interactions by coating the particles with a sur-
factant. A most interesting feature is to the liquid that
can respond to magnetic field. This characteristics result
from the magnetic stress (Maxwell’s stress) occurring in a
magnetic field. The precise investigation for the cavitation
and two-phase flow phenomena of magnetic fluid is very
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interesting and important not only as basic study on hydro-
dynamics of magnetic fluids, but also for finding solutions
to problems related to the development of practical engi-
neering applications of magnetic fluids, such as the new
energy conversion system using two-phase flows of mag-
netic fluid which has been proposed by the author [1,2].

The principle of such a fluid driving system is schemat-
ically depicted in Fig. 1. In this system, the flow is acceler-
ated in the region of the converging nozzle, and cavitation
inception is induced at a point downstream of the throat of
a diverging nozzle due to a pressure decrease. Furthermore,
the flow is additionally accelerated not only by the pump-
ing effect of the cavitation bubbles, but also by the rise of
magnetic pressure induced by the unbalance of magnetic
body forces in the single- and two-phase flow regions under
a nonuniform magnetic field. The idea of using a two-phase
flow system originated from the two-phase liquid–metal
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Nomenclature

a(i) interfacial area concentration per unit volume
CD drag coefficient
CV virtual mass coefficient
cp specific heat at constant pressure
c0 sound velocity
D inlet width of duct
e specific internal energy
eijk permutation symbol
gi

r contravariant vector of gravitational accelera-
tion

gij fundamental metric tensor
H strength of magnetic field
Hi contravariant vector of magnetic field
Hmax maximum strength of magnetic field
h specific enthalpy
k heat transfer rate
kB Boltzmann’s constant
M strength of magnetization
Mi contravariant vector of magnetization
N number density
p absolute pressure
q heat flux
qi contravariant heat flux vector
R radius
R gas constant
T absolute temperature
Ts saturation temperature
t time
ui,uj,uk contravariant velocity
ui,uj,uk covariant velocity

Greek symbols

a volume fraction
b dynamic viscosity

C phase generation density
c surface tension
g transverse coordinate
j ratio of specific heat
k thermal conductivity
l0 magnetic permeability in vacuum
m kinematic viscosity
n longitudinal coordinate
q density
Xi contravariant angular velocity vector
xi contravariant vorticity vector
$j covariant differential

Subscripts and superscripts

( )c condensation
( )e evaporation
( )(ex) exit section of the duct
( )g gas phase

( )i, ( )j, ( )k contravariant component
( )i, ( )j, ( )k covariant component
( )(i) interface
( )(in) inlet section of the duct
( )l liquid phase
( )s saturation
( )T two-phase
( )(th) nozzle throat
( )n contravariant component in the n-direction
( )g contravariant component in the g-direction
ð Þ mean value
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MHD power generation system which was proposed and
developed by Petrick and Branover [3]. Subsequent to their
proposal, we reported the results of a theoretical study
which demonstrated the possibility of using an electrically
conducting magnetic fluid [4–7] as a working fluid in a
liquid–metal MHD power generation system [8]. Our
results indicated that a better driving force or pressure rise
than that of the conventional system could be obtained by
using an electrically conducting magnetic fluid as the work-
ing fluid due to the advantage of the practical application
of fluid magnetization. According to these previous studies,
it is likely that high performance of the power generation
system is possible by application of electrically conducting
magnetic fluid to the working fluid in the two-phase
LMMHD [9,10] power generation system.

In the past few years, theoretical and experimental
studies on the basic characteristics of two-phase flow of
magnetic fluid have been conducted and the possibility of
flow control or effective driving force generation by mag-
netic force in the new energy conversion system using
two-phase flow has been confirmed [1,2]. It has also been
concluded that stabilization of two-phase flow is possible
by effective application of the magnetic force of the fluid
[2,11]. In the application of two-phase flow of magnetic
fluid to an actual fluid transport apparatus, it is important
to determine a simple and effective method to generate a
two-phase flow state so as to improve the total perfor-
mance of a fluid driving system using multiphase flow.

However, conventional two-phase flow systems essen-
tially require a powerful heat source or gas-injection equip-
ment for generation of a boiling two-phase flow or a gas–
liquid two-phase flow state. Additionally, research on
methods for the production of the two-phase magnetic
fluid flow state have not been precisely focused, and only
a few studies have so far been made on the basic mecha-
nism of cavitating flow due to the difficulty of confirming



Fig. 1. Principle of two-phase fluid driving system using cavitating flow of
magnetic fluid. Magnetic body force Fu = l0M Æ $H = Fd in the case
without cavitation, and Fd = (1 � ag)l0M Æ $H < Fu with cavitation (H is
the vector of magnetic field and M is the vector of magnetization).

Fig. 2. Schematic of computational system used in numerical analysis.
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experimental and theoretical results in high-speed two-
phase magnetic fluid flow with phase change. To overcome
these difficulties, we contrived a new type of two-phase
fluid driving and acceleration system by using cavitating
flow of magnetic fluid. A prominent feature of this system
is that there are no heat sources nor additional gas-injec-
tion devices except for a converging–diverging nozzle.
Based on an advanced mathematical model, which takes
the effect of two-phase magnetic body force acting on the
cavitating magnetic fluid flow state into consideration, we
developed a new method for analyzing cavitating flow.

In the present study, two-dimensional characteristics of
cavitating flow of magnetic fluid in a converging–diverging
channel with phase change are numerically investigated to
facilitate the further development and high performance of
a two-phase fluid acceleration system or fluid transport
applications. First, the governing equations of cavitating
flow of magnetic fluid based on the unsteady two-fluid
model in the generalized curvilinear coordinates system
are presented, and then several cavitating flow characteris-
tics are numerically calculated, taking into account the
effect of the strong nonuniform magnetic field.

2. Numerical method

2.1. Governing equations

The system used in the numerical analysis is schemati-
cally depicted in Fig. 2. In the initial stationary state, the
flow duct is filled with pressurized hexane-based magnetic
fluid, and flow immediately occurs when the outlet D–C
is opened. Magnetic fluid is continuously introduced with
high-speed via the inlet section A–B, the flow is accelerated
at the point of the converging–diverging nozzle, and the
inception of cavitation is induced by a pressure decrease.

In the present numerical formulation of the cavitating
flow characteristics of magnetic fluid, we extend the general
two-fluid model to a vapor–liquid multiphase fluid taking
into account the effect of strong nonuniform magnetic field
for analysis, which is based on the unsteady thermal non-
equilibrium two-fluid model of Kataoka [12], and Harlow
and Amsden [13]. In the numerical model, the condition
of the working fluid with the cavitating magnetic fluid flow
structure can be approximated to form a homogeneously
dispersed bubbly flow because the physical properties such
as latent heat for vaporization, density, viscosity, and sur-
face tension of the hexane-based magnetic fluid are very
small compared with those of pure water at room temper-
ature. Accordingly, it seems reasonable to assume that a
cavitating flow pattern is easily formed in the bubbly
two-phase flow. In the process of modeling, to consider
the effects of the rapid evaporation and condensation of
magnetic fluid, we apply the rapid phase-change model of
Yamamoto et al. [14] and Young [15] to the cavitating flow
of magnetic fluid.

The calculation is carried out using the two-dimensional
generalized curvilinear coordinate system (n,g) as shown in
Fig. 2; n and g denote the transverse and longitudinal coor-
dinates, respectively. The model for analysis simulates the
cavitating flow of magnetic fluid passing through a con-
verging–diverging channel in a vertical duct. It is assumed
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that the flow field is symmetric to the central axis D–A as
shown in Fig. 2. A nonuniform magnetic field is applied
in the longitudinal g-direction, which is parallel to the
mainstream of working fluid flow. In the numerical model-
ing under this condition, the following assumptions are
employed to formulate the governing equations:

(1) The cavitating flow is a two-dimensional unsteady
internal flow.

(2) The magnetic field is not influenced by the existence
of the gas phase.

(3) The applied magnetic field is homogeneous and
steady.

(4) The energy exchange between the liquid and gas
phases is taken into account.

(5) The liquid phase is incompressible fluid.

According to the previous study on single bubble in
magnetic fluid [16], it has been found that the effect of bub-
bles existence on magnetic field is revealed in the limited
condition of the large bubble diameter in the order of
3.0–5.0 mm. It is found that the bubble deforms and is
elongated in the direction of magnetic field because of the
inhomogeneous magnetic pressure distribution at the inter-
face between the gas- and the liquid phases. The nonunifor-
mity of magnetic pressure is caused by the transient
deformation of the magnetic field with refraction of mag-
netic flux at the interface due to the difference of magnetic
susceptibility between the paramagnetic liquid phase and
the almost diamagnetic gas phase. The bubble diameter
which deal with the present analysis, the cavitation bubble
expands maximum to the small diameter of about 0.50 mm
under the strong magnetic field. In that small diameter
condition, the surface tension at the interface is more
dominant than the magnetic deformation force at there.
Therefore, the influence of magnetic field on bubbles is
neglected in the present analysis. Under the above condi-
tions, the governing equations of the cavitating magnetic
fluid flow, taking into account the effect of nonuniform
magnetic field based on the unsteady two-dimensional
two-fluid model, are derived as follows.

The mass conservation equation for the gas and liquid
phases is

o

ot
ðamqmÞ þ rjðamqmuj

mÞ ¼ Cm; ð1Þ

where the subscript m denotes the gas phase (m = g) or li-
quid phase (m = l). t is the time, ag and al are the gas- and
liquid-phase volume fraction, respectively, qg and ql are the
gas- and liquid-phase densities, respectively. The relation-
ship (ag + al = 1) is assumed. uj

g and uj
l are the gas- and li-

quid-phase contravariant velocities, respectively, Cg and Cl

are the gas- and liquid-phase generation densities, respec-
tively, and $j is the covariant differential. The superscripts
and subscripts (i, j,k) denote the contravariant and covari-
ant components, respectively.
The combined equation of motion for the total gas and
liquid phase is

o

ot
ðagqgui

g þ alqlu
i
lÞ þ rjðagqgui

guj
g þ alqlu

i
lu

j
l Þ

¼ �gijrjpl þ l0alMjrjH i þ gjkrjrkbTui
l

þ gikrjrkbTuj
l �

2

3
ðrjrkbTuk

l Þgij þ ðagqg þ alqlÞgi
r;

ð2Þ

where the second term of the right-hand side of Eq. (2) rep-
resents the magnetic body force term in two-phase flow, Hi

is the contravariant vector of the magnetic field, Mj is the
contravariant vector of the magnetization, gij is the funda-
mental metric tensor, p is the absolute pressure, l0 is the
permeability in vacuum, and gi

r is the contravariant vector
of gravitational acceleration.

Additionally, bT in Eq. (2) denotes the viscosity of the
two-phase mixture flow that includes small dispersed bub-
bles. bT was evaluated using the following formula for the
viscosity of a suspension [17–19]:

bT ¼ 1� ag

0:680

� �h i�2

� bl ag < 0:5
� �

: ð3Þ

To consider the effects of additional forces that act on the
bubbles and the effects of radial expansion of the bubbles,
the equation of motion for the gas phase is here replaced
with the translational motion of a single bubble [20]. There-
fore, the Eulerian–Lagrangian two-way coupling model
[21,22] is applied to predict the two-dimensional cavitating
flow characteristics.

The equation of motion for the gas phase is

4

3
pqgR3

g

dui
g

dt
¼ �F i

p þ F i
g � F i

D � F i
VM � F i

B þ F i
LM þ F i

LS;

ð4Þ
where each additional force term is derived as follows:

F i
p ¼

4

3
pR3

ggijrjpl ð5Þ

F i
g ¼

4

3
pR3

gqggi
r ð6Þ

F i
D ¼

1

2
qlCDjui

g � ui
ljðui

g � ui
lÞpR2

g ð7Þ

F i
VM ¼ CVM � ql

4

3
pR3

g

d

dt
ðui

g � ui
lÞ þ

3

Rg

ðui
g � ui

lÞ
dRg

dt

� �
ð8Þ

F i
B ¼ 6R2

g

ffiffiffiffiffiffiffiffiffiffiffi
pqlbl

p Z t

0

d
ds ðui

g � ui
lÞffiffiffiffiffiffiffiffiffiffi

t � s
p ds ð9Þ

F i
LM ¼ pR3

gqle
ijkðXgj � XljÞðugk � ulkÞ ð10Þ

F i
LS ¼ 6:46

blR
2
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðXi
g � Xi

lÞjml

q eijkðXgj � XljÞðugk � ulkÞ ð11Þ

Xi
l ¼

1

2
xi

l ¼
1

4
eijkðrjulk �rkuljÞ; ð12Þ

where F i
p is the force due to the liquid-phase pressure gra-

dient, F i
g is the gravitational acceleration force, F i

D is the
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drag force, F i
VM is the virtual mass force considering the

expansion of a bubble, and F i
B is the Basset history term,

which takes into account the effect of the deviation in flow
pattern from the steady state. F i

LM is the Magnus lift force
caused by the rotation of the bubble as reported by Auton
[23]. F i

LS is Saffman’s lift force [24] caused by the velocity
gradient of the liquid phase. CD is the drag coefficient,
CVM is the virtual mass coefficient, Rg is the equivalent
bubble diameter, Xi is the contravariant angular velocity,
and xi is the contravariant vorticity. d/dt denotes the sub-
stantial derivative.

The equation for the angular velocity of a bubble is
derived as follows [24]:

dXi
g

dt
¼ 15bl

R2
g � qg

ðXi
l � Xi

gÞ: ð13Þ

The energy equation for the gas and liquid phases is

o

ot
ðamqmemÞ þ rjðamqmemuj

mÞ

¼ �pm

oam

ot
�rjðampmuj

mÞ þ CmhðiÞm þ qðiÞm aðiÞ

� rjðamqj
mÞ þ amUm: ð14Þ

In the above equation, the subscript m denotes the gas
phase (m = g) or liquid phase (m = l). hðiÞg and hðiÞl are the
enthalpy of the gas phase and that of the liquid phase at
the interface, respectively. a(i) is the gas–liquid interfacial
area concentration per unit volume. CghðiÞg and Clh

ðiÞ
l are

the interfacial energy transfer terms due to the liquid–
vapor phase change. qðiÞg and qðiÞl are the heat transfer terms
of mutual interaction between the vapor and liquid inter-
face. qj is the contravariant heat flow vector, and U is the
energy dissipation function, as described below:

qi
m ¼ �kmgijrjT m;

Um ¼ �
2

3
bmðriui

mÞ
2 þ 2bmsi

jmsj
im;

si
jm ¼

1

2
ðrjui

m þriuj
mÞ:

8>>>><
>>>>:

ð15Þ

We assume that the mass of each vapor bubble and that of
the condensed liquid droplet in each computational loca-
tion is constant. Based on this assumption, the mass con-
servation equation for number density Nk is derived as
follow:

o

ot
4

3
pR3

kN kqk

	 

þrj

4

3
pR3

kNkqkuj
k

	 

¼ Ck; ð16Þ

k ¼ e : Rk ¼ Rg; Nk ¼ N g; qk ¼ qg; ui
k ¼ ui

g; Ck ¼ Cg;

k ¼ c : Rk ¼ Rl; Nk ¼ N l; qk ¼ ql; ui
k ¼ ui

l; Ck ¼ Cl;

(

where subscript k denotes evaporation (k = e) or condensa-
tion (k = c).

The governing equations of cavitating flow mentioned
above are constructed by Eulerian-type equations for the
liquid phase and by Lagrangian-type equations for the
gas phase.
2.2. Constitutive equations

The drag coefficient (CD) and the virtual mass coefficient
(CVM) are defined as follows [24]:

CD ¼
24

ReB

ð1þ 0:15Re0:687
B Þ þ 0:42

1þ 42; 500Re�1:16
B

;

CVM ¼ 0:5;

ReB ¼
qljui

g � ui
ljD

bl

:

8>>>>><
>>>>>:

ð17Þ

The energy balance condition at the interface of the gas
and liquid phases is expressed by the following equation:

CghðiÞg þ Clh
ðiÞ
l ¼ 0;

qðiÞg þ qðiÞl ¼ 0;

(
ð18Þ

where hk = cpkTk; (k = g, l). Detailed constitutive equations
for interfacial energy transfer terms in Eq. (18) are given by
following extended empirical formulas [25,26]:

qðiÞg ¼ kðiÞðT g � T sÞ; ð19Þ

where k(i) is the interfacial heat transfer rate between the
gas and liquid phases, which is given by following equa-
tions [25]:

kðiÞ ¼ akðiÞg þ alk
ðiÞ
l ;

kðiÞg ¼
8:067 � kg

Rg

;

kðiÞl ¼
1:0þ 0:37Re0:50

V � Pr0:35
V

Rg

;

ReV ¼
2:0Rgjui

g � ui
lj

ml

;

PrV ¼
cpl � bl

kl

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð20Þ

It is assumed that the energy transfer is caused by the heat
transfer between the isothermal spherical bubbles and the
surrounding liquid. Assuming a spherical bubble with
equivalent radius Rg, the expression of the interfacial area
concentration per unit volume a(i) is obtained by the fol-
lowing equation [12]:

aðiÞ ¼ 3ag

Rg

: ð21Þ

In general, the interfacial transfer terms are proportional to
the interfacial area concentration, a(i). Therefore, a(i) is one
of the most important parameters in the two-fluid model.
Assuming that the vapor gas phase follows an ideal gas
law and that the relationship between gas-phase pressure
(pg) and density (qg) obeys polytropic change, the following
equation by Hirt and Romero [27] results:

qgðjg � 1Þeg ¼ ½pg � c2
l0qlða�g � agÞ�a�g; ð22Þ

ag P agc : a�g ¼ ag;

ag < agc : a�g ¼ agc;

(
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where cl0 is the sound velocity in the hexane-based mag-
netic fluid at the initial state (cl0 = 1050.0 m/s), and agc de-
notes the threshold of the void fraction (agc = 0.005) [27].

The constitutive equation for gas-phase generation den-
sity (Cg) is as follows:

Cg ¼ Cge � Cgc; ð23Þ
where Cge and Cgc denote the gas-phase evaporation den-
sity and gas-phase condensation density, respectively. By
introducing constitutive equations for Cge and Cgc to con-
sider the effect of the surface tension (cl) in the cavitation
inception process, we extend the classical nucleation theory
for water droplets from subcooled vapor to hexane-based
magnetic fluid. Namely, Cge and Cgc are assumed to be pro-
portional to the degree of subcooling and superheat. Fur-
thermore, if Cgk (k = e,c) is expressed by the sum of the
nucleation rate of the evaporated bubbles or the condensed
liquid droplets as well as expressed by the increase in mass
due to the growth of vapor bubbles and condensed drop-
lets, the following equations for Cgk are derived [28,15]:

Cgk ¼
4

3
pqkIkR3

kðcrÞ þ 4pqk

Ximax

i¼1

N kiR2
ki

dRki

dt
; ð24Þ

Ik ¼
Ac

1þH
2cl

pm3
a

	 
1=2 q2
g

ql

exp �
4pR2

kðcrÞcl

3kBT k

 !
;

H ¼ 2ðjg � 1Þ
jg þ 1

Dh
RT g

Dh
RT g

� 0:5

	 

;

RkðcrÞ �
2clT s

qkDhDT
:

8>>>>>>>><
>>>>>>>>:
In Eq. (24), subscript k has the same definition as that used
in Eq. (16), Rk is the radius of a bubble or droplet, Rk(cr) is
the Kelvin–Helmholtz critical nucleate radius, kB is Boltz-
mann’s constant, Ik is the nuclei generation rate of vapor
bubbles or liquid droplets, Ac is the condensation coeffi-
cient, H is the nonisothermal correction factor, ma is the
mass of a single molecule of hexane, c is the surface ten-
sion, R is the gas constant, Ts is the saturation tempera-
ture, and subscript i is the value at each calculation cell.
Dh denotes the latent heat, which is described by the differ-
ence in specific enthalpy between the liquid and gas phases,
and is defined as Dh = hl � hg. The temperature difference
between saturation temperature and gas- or liquid-phase
temperature, DT, is defined as DT = jTs � Tkj. Nki denotes
the number density of the generated vapor bubbles or con-
densed liquid droplets at each calculation cell (i).

By introducing the formulation of the growth process
for bubbles and condensed droplets, we assume that the
growth rate of a bubble or droplet is controlled by the rate
at which the enthalpy of vaporization or condensation can
be conducted away from the bubble and droplet to the bulk
liquid [29]. Under that assumption, the equation of the
growth process for a single vapor bubble and a condensed
droplet is derived as

Dhqk
dRki

dt
¼ pkffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pRT g

p jk þ 1

2jk
cpkDT ðiÞ; ð25Þ
where DT(i) denotes the interfacial temperature between the
vapor phase and the condensed droplet and is derived by
the following equation:

DT ðiÞ ¼ 1� RkðcrÞ

Rki

	 

jT s � T kj: ð26Þ
2.3. Numerical conditions and procedure

As a practical example, we use the fluid properties of a
hexane-based temperature-sensitive magnetic fluid with
manganese–zinc ferrite particles of 50% weight concentra-
tion [2]. The strength of magnetization M is approximated
by the previous measurement data [2] and is expressed as a
function of temperature Tl and the strength of magnetic
field H as

M ¼Ca � f1ðHÞ � f2ðT lÞ;
f ðHÞ¼ 290:0þ0:171H �6:809�10�7H 2þ1:007�10�12H 3

ðH 6 115:3 kA=mÞ;
f2ðT lÞ¼ 6:675�104�130:07T l;

Ca¼ 3:108�10�5:

8>>>>>>><
>>>>>>>:

ð27Þ
Next, in order to consider the effect of a nonuniform mag-
netic field as depicted in Fig. 2, the distributions of the lon-
gitudinal magnetic field component Hg and the transverse
magnetic field component Hn are derived by the following
equations. In introducing Hg and Hn, we referred to the
analytical solution of the nonuniform magnetic field distri-
bution of a Helmholtz coil [30] and the measurement
results of the magnetic field of an electromagnet, which
were used in the previous experimental studies [1,2]:

H g ¼ H max � expð�g�2h Þ;
H n ¼ H max � n� � jg�hj � expð�g�2h Þ;
g�h ¼ g� � 1

2
g�max;

8><
>: ð28Þ

where Hmax is the maximum magnetic field strength; g*

denotes the normalized longitudinal coordinate, which is
defined as g* = g/gmax; and n* denotes the normalized
transverse coordinate, which is defined as n* = n/nmax.
The Hmax on the electromagnet is installed in the nozzle
throat.

The finite difference method is used to solve the set of
governing equations mentioned above. In the present cal-
culation, the discrete forms of these equations are semi-
implicitly obtained using a staggered grid. The grid is
concentrated at the nozzle wall to capture the cavitation
inception precisely. The coordinate is transformed to the
axisymmetric two-dimensional coordinate system and com-
putation is performed in that coordinate system. The shape
of bubble is assumed to be spherical.

The convective terms are discretized with a third-order
QUICK scheme [31]. Also, the implicit fractional-step
method [32] is used for time integration. Then the modified
SOLA (numerical SOLution Algorithm for transient fluid
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flow) method of Tomiyama et al. [19,33], which is superior
for the formulation and solution of a gas liquid two-phase
flow problem, is applied for the numerical calculation. The
liquid-phase velocity, ui

l, at the location of bubbles is calcu-
lated using an area-weighting interpolation method which
was employed in the SMAC algorithm by Amsden and
Harlow [34].

A free-slip condition for the prescribed liquid-phase
velocity is applied to the central axis D–A, and the nonslip
condition for prescribed liquid-phase velocity is applied to
the sidewall C–B in Fig. 2. The inlet pressure and outlet
pressure is applied in the initial stationary state. Immedi-
ately after the first time step computation is performed,
the cross-sectional mean velocity with parabolic flow pro-
file is computed and is subsequently employed as the inlet
velocity profile. Therefore, a fully developed parabolic
velocity profile is continuously applied for liquid-phase
velocities to the inlet cross-sectional area of the flow duct
A–B. A convective outflow condition is applied for
liquid-phase velocities to the exit section of the duct D–
C. Adiabatic conditions are applied for thermal boundary
conditions at the duct-wall surface. The initial stationary
condition of the liquid phase is assumed to be the pressur-
ized fluid state.

The conditions for numerical analysis are listed in
Table 1. For other physical properties used in constitutive
equations, bl and kl are given as a function of temperature
and are defined by following empirical formula:

bl ¼ qlð2:247� 10�4 � 1:976� 10�6T l þ 5:897� 10�9T 2
l

�5:926� 10�12T 3
l Þ ðPa sÞ;

kl ¼ 0:1412þ 3:4659� 10�4T l � 2:086� 10�6T 2
l

þ2:431� 10�9T 3
l ½W=ðm KÞ�:

8>>><
>>>:

ð29Þ
The saturation temperature Ts is given as a function of
pressure. The other required physical properties of the
liquid phase are given by the tables of the thermophysical
properties of hexane [35].

The interval of each time step is automatically adjusted
during the computation to satisfy the CFL condition
[18,33]. We actually calculated solutions on three different
grid densities: 50 · 120, 60 · 150, and 100 · 220 nodes. As
a result, we found that the each numerical result shows
almost the same profile, and thus the grid independence
of the numerical results was confirmed. Therefore, as a
compromise between computer memory and accuracy, we
Table 1
Numerical conditions

Density ql 1386.0 kg/m3

Inlet pressure pl(in) 0.20 MPa
Outlet pressure pl(ex) 0.101 MPa
Inlet temperature Tl(in) 283 K
Inlet internal energy el(in) 1205.0 kJ/kg
Surface tension cl 0.0213 N/m
Inner width of duct D 8.0 mm
chose to use a 60 · 150 structured grid in the n and g direc-
tions for the calculations. During the execution of the
unsteady calculation, no significant differences in the mean
flow profiles were found in the 1200–1500 time steps. We
determined that the cavitating flow almost reaches steady
state when such flow profiles are obtained.

In addition, in order to clarify the effects of magnetic
field and Reynolds number Re on the generation of cavita-
tion, the cavitation number r is introduced as follows [36]:

r ¼
plðthÞ � ps

1
2
qlu

i
lðthÞ

2
; ð30Þ

Re ¼
jui

lðthÞj � d
ml

; ð31Þ

where pl(th) is the static pressure at the nozzle throat, ps is
the saturated vapor pressure, d is the nozzle throat width,
ui

lðthÞ is the liquid-phase velocity vector at the nozzle throat,
and the overline denotes the cross-sectional mean value.
3. Results and discussion

Fig. 3 shows the numerical results of the transient evo-
lution of the void fraction (ag) contour, and Fig. 4 shows
the instantaneous liquid-phase pressure (pl) contour.
According to Fig. 3, cavitation inception effectively occurs
in the divergent nozzle throat. In the case of a strong mag-
netic field [Hmax = 115.3 kA/m, Case (a)], cavitation for-
mation of a cloud cavity at the diverging nozzle throat is
more greatly suppressed than that of a nonmagnetic field
[Hmax = 0 kA/m, Case (b)] due to the magnetic body force
under a sharp magnetic field gradient. The growth rate of
the volume fraction of the cavitation bubble in the strong
magnetic field is found to be smaller than that in the non-
magnetic field. Focusing on Case (a), immediately after the
flow is initially induced, taking note of the primary feature
of the void fraction profile under a strong magnetic field,
the void fraction profile becomes elongated in the longitu-
dinal direction of negative magnetic field gradient because
the bubbles are accelerated and migrate due to the two-
phase magnetic body force in the direction of the negative
magnetic field gradient. The effect of two-phase magnetic
body force is characterized by the second right-hand term
in the momentum equation (Eq. 2).

With the elapse of time, because the magnetic body force
based on the transverse magnetic field gradient acts so that
the bubbles migrate from the wall into the center of the
duct, it becomes clear that the void fraction increases
locally near the central axis. Downstream of the nozzle
throat, although magnetic body force acts as flow resis-
tance, the forces decreases due to the gas-phase inclusion.
In the two-phase flow region, not only the decreasing effect
of flow resistance due to the negative magnetic field gradi-
ent, but also the pressure-rise effect caused by the unbal-
ance of the magnetic body force between the single- and
two-phase flow region are obtained.



Fig. 3. Effect of nonuniform magnetic field on time evolution of void
fraction distributions (enlarged view of nozzle throat section).

Fig. 4. Effect of nonuniform magnetic field on instantaneous liquid-phase
pressure contours (enlarged view of nozzle throat section).

J. Ishimoto / International Journal of Heat and Mass Transfer 49 (2006) 3866–3878 3873
Furthermore, additional lift force operates in the trans-
verse direction, which causes the bubbles to migrate in the
duct-wall direction. However, as the two-phase magnetic
body force begins to dominate the bubbles, it is found that
the large volume fraction region of gas phase moves to the
central axis of the duct. According to this result, the gas-
phase motion is controlled not only by the buoyancy force,
but also by the liquid-phase pressure gradient, additional
lift forces, and especially by the two-phase magnetic body
force that acts on the cavitation bubbles.

If the phenomenon applicable to the conditions of both
a strong magnetic field and nonmagnetic field is as
explained here, then the gas-phase volume fraction
increases at the throat position and is concentrated to form
a small cavity cloud downstream of the divergent nozzle
due to the small vortex induced by the wake passing
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through the nozzle throat, which is due to the effect of the
negative pressure gradient. When the magnitude of the
cloud cavity is above a certain size, due to the re-entrant
jet resulting from the boundary layer separation, the cavity
becomes detached from the cloud and then remains in the
high-volume fraction region as the gas phase moves down-
stream. Especially in the case of a strong magnetic field,
because the two-phase magnetic ejection effect acts on the
cloud cavity in the negative magnetic field gradient region,
the separation of the cloud cavity is enhanced by the two-
phase magnetic body force acting on the cavitation
bubbles. Due to the effects of suppression and magnetic
ejection on the cavitation bubbles as well as the enhance-
ment of the cloud cavity separation, the magnitude of the
cloud cavity under a strong magnetic field becomes smaller
than that of a nonmagnetic field, and a more homogeneous
two-phase flow is generated under the strong magnetic field
than that in the case of the nonmagnetic field.

Fig. 5 shows the present numerical results of the effect of
the liquid-phase pressure rise in the longitudinal direction,
in comparison with the previous one-dimensional numeri-
cal result for its effect in the steady boiling two-phase pipe
flow of magnetic fluid and with the experimental results of
the pressure-rise effect in the longitudinal direction for the
steady boiling two-phase pipe flow and injected gas–liquid
two-phase pipe flow of magnetic fluid [2]. In this figure, the
axis of the ordinate denotes the normalized pressure-rise
parameter (Dp�l ) and is derived by the following equation:

Dp�l ¼
plðeffÞ � plðinÞ

plðinÞ
; ð32Þ

where plðeffÞ is the cross-sectional mean-effective driving
pressure from which the influence on the prudence of the
liquid-phase fluid can be deducted. pl(in) is the inlet pres-
Fig. 5. Normalized pressure-rise effect Dp�l in cavitating flow of magnetic
fluid along the central axis A–D, in comparison with the previous one-
dimensional numerical result and experimental results of Dp�l along the
longitudinal direction for steady boiling two-phase and gas–liquid two-
phase pipe flow of magnetic fluid [2].
sure. The axis of the abscissa in Fig. 5 denotes the normal-
ized longitudinal coordinate g*(= g/gmax). Focusing on the
present numerical result of cavitating magnetic fluid flow,
the pressure-rise effect based on the two-phase magnetic
body force under an applied magnetic field region acts
effectively at the initial stage of cavitating flow in the
two-phase downstream region. However, as time elapses
and the flow approaches steady state, the pressure-rise
effect, which is based on cavitating two-phase magnetic
body force is found to decrease especially around the exit
section of the duct.

Comparing our previous results regarding the pressure
distribution of the boiling two-phase and injected gas–
liquid two-phase magnetic fluid flow [2] with the present
numerical results, it is found that the present fluid acceler-
ation system which uses cavitation can achieve a greater
pressure-rise effect. Also, it is found that a greater pres-
sure-rise effect can be obtained by those kinds of two-phase
production method in the following order: 1. cavitating
flow > 2. boiling two-phase flow > 3. injected gas–liquid
two-phase flow of magnetic fluids. Therefore, when a fluid
driving system which uses two-phase magnetic fluid is
employed, a rather high pressure-rise effect resulting from
the use of cavitation for two-phase flow production can
be obtained.

Fig. 6 shows the fluctuation of bubble radius (Rg) as a
function of the time at position E (as depicted in Fig. 2,
g = 0.5gmax), which is just a quarter of the nozzle throat
width, where the cavitation actively occurs. It is found that
the magnitude of transient displacement of Rg in the case of
a strong magnetic field (Hmax = 115.3 kA/m) has a smaller
value and that the size of Rg becomes more homogeneous
than that in the case of a nonmagnetic field because the
Fig. 6. Effect of nonuniform magnetic field on fluctuations of bubble
radius as a function of time.



Fig. 7. Effect of magnetic acceleration on the longitudinal liquid-phase
cross-sectional mean velocity as a function of time.
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magnetic body force acts to suppress the expanding cavita-
tion bubbles. From Figs. 3–6, it is clarified that the
decrease of pl induces an increase of ag and that the expan-
sion or contraction of bubble radius Rg corresponds to the
change of pl. Since the displacement magnitude of Rg has a
small value, it is also clarified that the generated cavitation
bubbles maintain a small size in the vaporization process
and in the initial cavitating flow state.

Fig. 7 shows the effect of magnetic acceleration on the
longitudinal liquid-phase cross-sectional mean velocity,
ug

l , as a function of time (t). In the case of a strong magnetic
field (a), the fluid acceleration effect which is based on the
two-phase magnetic body force, increases with the lapse of
time. It is found that ug

l sharply increases in the flow field
and becomes a two-phase flow state, especially increasing
at the converging section of the nozzle throat (g = 0.5gmax),
and that ug

l tends to express the maximum value at the exit
section of the duct. In the case of the nonmagnetic field (b),
it is found that ug

l increases with an increase in time (t).
However, the magnitude of ug

l exhibits a lower value than
that of ug

l in the case of a strong magnetic field. Further-
more, it is found that the rate of increase on ug

l in a strong
magnetic field shows a greater value than that in a nonmag-
netic field. It is also found that the fluctuation of ug

l in the
vicinity of the outlet section sharply increases with maxi-
mum time step because of the rapid propagation of the
velocity and pressure fluctuations from the nozzle throat
section to the outlet section of the duct. The pressure fluc-
tuation at the nozzle throat is caused by the effects of sud-
den cavitation generation and rapid bubble growth with
time, also by the high-speed inflow of liquid phase into
the throat section. The magnitude of velocity sharpness
does not so vary or increase any more when the flow state
becomes to the steady state.

Fig. 8 shows the profiles of the liquid-phase velocity (ui
l)

around the throat section. The flow separation and back-
ward flow of ui

l locally occur in the vicinity of the wall of
the throat section upstream of the point of cavitation
inception. In the case of a strong magnetic field
(Hmax = 115.3 kA/m), the liquid phase is locally acceler-
ated around the throat wall section and the magnitude of
ui

l has a larger value compared with the case of a nonmag-
netic field because of the two-phase magnetic acceleration
effect which acts on the liquid phase due to the strong mag-
netic field gradient. In the throat wall vicinity where cavita-
tion is actively generated, the liquid-phase velocity is
strongly accelerated because of the two-phase magnetic
driving force and the effect of bubbles pumping acting on
the liquid phase. The slip ratio (ui

g=ui
l) in the vicinity of

throat wall section tends to have a large value. Further-
more, because of the increase in momentum exchange
between the gas and liquid phases, the magnitude of ui

l

locally increases in the region where the cavitation is
actively generated. According to the results, it is found that
rather than utilizing only the pumping effect of the bubbles
when employing the two-phase fluid driving system, the
method which utilizes the two-phase magnetic body force
generated by cavitating magnetic fluid flow can obtain
the enhanced fluid acceleration effect.

Fig. 9 shows the instantaneous gas-phase velocity ui
g

around the throat section. In the initial flow state, it is
found that the backward flow of ui

g is generated upstream
of the throat due to the effect of the separation wake of



Fig. 8. Effect of nonuniform magnetic field on instantaneous liquid-phase
velocity vector (enlarged view of nozzle throat section).

Fig. 9. Effect of nonuniform magnetic field on instantaneous gas-phase
velocity vector (enlarged view of nozzle throat section).
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liquid phase in the vicinity of the throat wall and that the
gas phase is dispersed throughout the downstream region
of the throat section. In the case of a strong magnetic field
(a), the gas phase is locally accelerated in the direction of
the negative magnetic field gradient, and the magnitude
of ui

g is indicated to have a larger value compared with
the case of a nonmagnetic field (b) because of the magnetic
ejection effect, which acts on the bubbles. Considering Figs.
9 and 3 together, in the strong magnetic field gradient
region, the void fraction ag locally decreases due to appli-
cation of the nonuniform magnetic field because the gas
phase is locally accelerated and the slip ratio increases
due to the magnetic ejection effect on bubbles in the two-
phase region.

In addition to the formation of the cavity vortex and its
growth in the strong magnetic field, the advection of the
cavity cloud is enhanced by the magnetic ejection effect in
the downstream region of the throat. With time, the



J. Ishimoto / International Journal of Heat and Mass Transfer 49 (2006) 3866–3878 3877
gas-phase motion exhibits diffusing behavior, and the ui
g

profile takes on a different aspect from the liquid-phase
velocity profiles (ui

lÞ. The characteristic gas-phase behavior
in the magnetic fluid is not only due to the several addi-
tional forces that appear in Eq. (4), but also to the two-
phase magnetic body force which acts on the bubbles that
is included in the momentum terms in Eq. (2). According to
the numerical results on gas-phase behavior, it is clarified
that the precise control of bubble motion and control of
the two-phase flow is possible by practical use of the char-
acteristic magnetization of fluid inherent in magnetic fluid.

Fig. 10 shows the effect of magnetic field on cavitation
number r as a function of Reynolds number Re. The cav-
itation number r is defined as Eq. 30. According to the
numerical results, the profile of r in the case of a strong
magnetic field is found to have a larger value than that in
the case of a nonmagnetic field. The increase of r with an
increase in magnetic field strength is caused by the increase
of magnetic body force acting on the liquid-phase static
pressure at the nozzle throat (pl(th)). Additionally, it is
found that the effect of magnetic body force on the magni-
tude of r is more dominant than the magnetic acceleration
effect.

If the phenomenon applicable to the conditions of the
case with and that without the magnetic field is as
explained here, r decreases with an increase in the Re in
the region of small Reynolds number, and the profile of
r tends to lean to the left. This tendency is due to the small
magnitude of whole static pressure at the same r which
arose due to the small liquid-phase velocity. Contrarily, r
increases with an increase in the Re in the region of high
Reynolds number. Especially in the case of a strong mag-
netic field, it is found that the positive gradient of increas-
Fig. 10. Effect of magnetic field on cavitation number as a function of
Reynolds number.
ing r tends to become large and tends to lean to the right in
the region of high Reynolds number. Therefore, it may be
said that magnetic control for suppression of cavitation
bubbles is remarkably enhanced in the condition of high
Reynolds number.

4. Conclusions

(1) Formation of a cloud cavity in the case of a strong
magnetic field in the diverging nozzle throat is more
greatly suppressed than such formation in the case
of a nonmagnetic field due to a magnetic body force
with a sharp magnetic field gradient. Especially in the
case of a strong magnetic field, because the two-phase
magnetic ejection effect acts on the cloud cavity in the
negative magnetic field gradient region, separation of
the cloud cavity is enhanced by the two-phase mag-
netic body force acting on the cavitation bubbles.

(2) The pressure-rise effect due to the two-phase mag-
netic body force under an applied magnetic field
region effectively acts in the downstream two-phase
region. The magnitude of the pressure-rise effect in
the cavitating magnetic fluid flow has a larger value
than the magnitude in the boiling two-phase magnetic
fluid flow.

(3) Rather than utilizing only the pumping effect of bub-
bles when employing the two-phase fluid driving sys-
tem, the method that utilizes the two-phase magnetic
body force generated by cavitating magnetic fluid flow
was found to be capable of obtaining an enhanced
fluid acceleration effect.

(4) The cavitation number in the case of a strong mag-
netic field has a larger value than that in the case of
a nonmagnetic field. Magnetic control for suppres-
sion of cavitation bubbles is remarkably enhanced
in the condition of high Reynolds number.
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